

Matematica Senza Frontiere

Scuola superiore - classi seconde e terze

Proposta di soluzioni Accoglienza 2013 - 2014

Esercizio 1 (7 punti) I fratelli Dalton

Le informazioni 2 e 3 permettono di individuare la posizione di Grat (0; B; III). Le informazioni 1, 2 e 5 permettono d'individuare la posizione di Bill (1; A; I). La posizione di Emmet (2; B; I) può essere individuata seguendo la 4ª informazione e la cella di Grat.

Concludendo: Grat (0; B; III) Emmet (2; B; I) e Bill (1; A; I).

Esercizio 2 (5 punti) Quanti nove

L'astuzia consiste nello scrivere

E concludendo la somma finale è $2 + 1 + 2 + 2009 \times 9 + 7 + 9 + 8 + 7 = 18 117$.

(si può pervenire al risultato anche procedendo per tentativi moltiplicando 2013 per 9, 99, 999,....9 999.....cosicché tutti i numeri individuati iniziano per 2012 e terminano per 7 987 con tra questi due numeri una serie di cifre 9).

Esercizio 3 (7 punti) Geometria sotto vetro

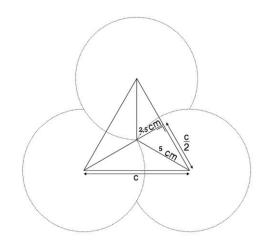
Nella posizione richiesta il baricentro del triangolo equilatero si trova a 5 cm dai vertici o a 2,5 cm dal lato.

A partire dalla figura, applicando il teorema di Pitagora si ha

$$\frac{c}{2} = 2,5\sqrt{3}$$

cioè $c = 5\sqrt{3}$ cm $\approx 8,66$ cm.

Ci sono altre modalità di soluzione ad es di tipo trigonometrico.



Esercizio 4 (5 punti) Espandiamo!

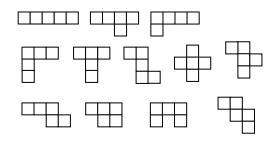
In corrispondenza di ogni operazione la distanza reale rappresentata è moltiplicata per 4. Successivamente per effetto di ogni operazione si ha:

 $2\,400\,m = 2.4\,km$; $9.6\,km$; $38.4\,km$; $153.6\,km$; $614.4\,km$; $2\,457.6\,km$

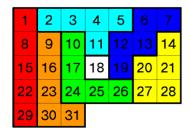
Per rappresentare quanto chiesto saranno, quindi, necessari 7 ingrandimenti.

Esercizio 5 (7 punti) Un bell'invito

I 12 pentamini sono:



Molte sono le possibilità, eccone due esempi:



1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Esercizio 6 (5 punti) Lato dispari

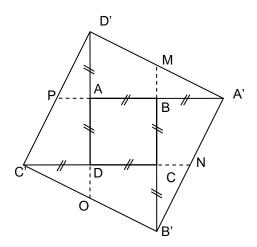
Da 1 a 37 ci sono 19 numeri dispari, da 1 a 65 ci sono 33 numeri dispari, pertanto le case con numero civico dispari nella mia via sono 51.

Esercizio 7 (7 punti) Quadrato perduto

Tracciato il disegno come quello indicato a fianco, tenendo conto delle proprietà dei lati del quadrato e del punto medio, si dimostra che M, N, O e P sono rispettivamente i punti medi dei segmenti D'A', A'B', B'C' e C'D'.

Poi si tracciano D'O, B'M, A'P e C'N.

L intersezione dei segmenti citati costruisce il quadrato ABCD.



Esercizio 8 (5 punti) Risparmiamo viaggiando insieme!

Sia x il numero delle auto con 3 o 4 persone e y il numero delle auto con 1 o 2.

Il numero totale delle auto risulta 2x+2y, quello delle persone 3x+4x +2y+y cioè 7x+3y=100

	Х	1	4	7	10	13
	у	31	24	17	10	3
Numero auto	2x+2y	64	56	48	40	32
Numero totale persone	7x+3y	100	100	100	100	100

Dato che si tratta di numeri interi le diverse possibilità sono: 64; 56; 48; 40; 32.

(Si può pervenire al risultato per prove successive senza l'uso delle equazioni).

Esercizio 9 (7 punti) Algebra delle sfere

Molteplici sono le modalità di soluzione di questo esercizio.

Si possono scomporre in fattori i numeri scritti sulle sfere e dedurre successivamente i numeri richiesti.

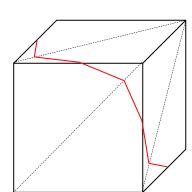
Si può "inserire" 5 nella sfera contrassegnata con 96 perché è la sola legata a tre multipli di 5 (20, 15 e 60); analogamente 7 nella sfera contrassegnata col 12 perché è la sola legata a tre multipli di 7 (84, 112, 336) e si prosegue per deduzione. La soluzione è, pertanto, il numero contenuto nella sfera indicato fra parentesi

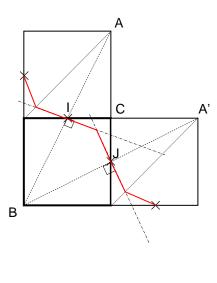
12(7) - 84(3) - 60(6) - 336(4) - 112(1) - 15(2) - 96(5) - 20(8)

Esercizio 10 (10 punti) Felice separazione

Si trovano i punti equidistanti da A e B sulla faccia davanti: sono i punti dell'asse di AB posti al di sopra della diagonale BC e quelli dell'asse di A'B posti al di sotto della diagonale BC.

Nello stesso modo si può costruire la linea di frontiera sulle altre due facce dello sviluppo.





Speciale terze

Esercizio 11 (5 punti) Colori in disordine

Molteplici sono le modalità di soluzione di questo esercizio:

Diagramma ad albero, tabella delle possibilità....

Per i 4 cappucci ci sono 4! = 24 permutazioni.

La probabilità che ogni cappuccio sia sul pennarello corrispondente è $\frac{1}{24}$

La probabilità che nessun cappuccio sia sul pennarello corrispondente si può calcolare considerando tutte le possibilità che sono 9.

La probabilità che nessun cappuccio sia sul pennarello corrispondente è $\frac{9}{24} = \frac{3}{8}$

Esercizio 12 (7 punti) Rassegna "Charlot"

Si considerino 100 allievi. Se a 71 allievi è piaciuto il film A e a 76 è piaciuto il film B ci sono almeno 71 + 76 - 100 = 47 allievi ai quali sono piaciuti i film A e B.

Dato che a 63 allievi è piaciuto il film C, ci sono almeno 47+63 - 100 = 10 allievi ai quali sono piaciuti tutti i film A, B e C. La percentuale minima degli allievi ai quali sono piaciuti i tre film è del 10%.

Si può anche considerare che tutti quelli a cui è piaciuto il film C hanno apprezzato sia A sia B; di conseguenza ai 63 ai quali è piaciuto C, sono piaciuti anche A e B.

La percentuale massima degli allievi cui sono piaciuti i tre film è del 63%.

Esercizio 13 (10 punti) Attenti a dove mettete il piede!

Sia A il vertice che è il punto medio del segmento congiungente il piede H di una delle altezze al punto medio I del lato AB. I punti H, A, B e I sono allineati.

Hè il piede dell'altezza relativa al lato AB.

Il vertice C è il punto d'intersezione di questa altezza con la circonferenza di centro A e raggio AB.

Il triangolo è isoscele in A.

Se si pone HA = AI = IB = a. si ha AB = AC = 2a.

Nel triangolo CHA, per il teorema di Pitagora si ha CH = a. $\sqrt{3}$,

nel triangolo HBC, si ha CB = 2a. $\sqrt{3}$.

L'area del triangolo ABC (in mm²) è $\frac{a\sqrt{3} \times 2a}{2}$ = 10 000. Da cui 2a =152 mm

Concludendo AB ≈ 152 mm e BC ≈ 263 mm